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1.     Executive Summary 
 
This project pursues two complementary research objectives: (i) developing efficient feature 
selection algorithms for case based planning (CBP), and (ii) evaluating and demonstrating the 
effectiveness of feature selection for CBP. 
 
A key obstacle in developing planning and adaptive replanning methods for real-world problems 
is the so-called “curse of dimensionality” - the state space explosively grows as the number of 
state variables (features) increases, making planning/replanning methods prohibitively expensive 
to compute. This project aims to improve the scalability of case based planning/replanning in 
domains with high-dimensional state spaces by automatic feature selection. 
 
This project proposes innovative methodologies of automatic feature selection for Experience-
Based Adaptive Replanning (EBAR). EBAR is an extension of the Distributed Episodic 
Exploratory Planning (DEEP) in-house project conducted at the Air Force Research Lab. The 
basic approach for EBAR is CBP. In CBP, past planning experiences are stored in a case base 
where each case describes a situation (the state of the environment) and the plan for that 
situation. A candidate plan for each new situation is decided by retrieving a case of the most 
similar situation from the case base. Given potentially hundreds of features which can be used to 
describe the state of the environment, automatically selecting a small set of features that are 
sufficient for efficient and effective CBP is one of the key challenges facing the DEEP team. 
Currently, there is no existing solution to this challenge. 
 
In this project, we have developed two major types of feature selection methods for CBP, 
wrapper and filter, which differ mainly in how they evaluate the quality of a feature subset. A 
wrapper feature selection method evaluates the quality of a feature subset based on how similar 
the plan of a case to the plan of its nearest neighbor (the case with the most similar situation) 
measured based on the subset of state features. In contrast to a wrapper method, a filter method 
does not decide feature relevance based on nearest neighbor search, but based on how well a 
subset of state features distinguishes cases of dissimilar plans. For both wrapper and filter 
methods, the key innovation in feature subset evaluation lies in a general similarity (or distance) 
measure for the plan portion of cases in a case base. We have developed novel measures for plan 
similarity and feature selection methods based on these measures. We have developed an 
efficient result validation procedure and demonstrated the efficiency and efficacy of the proposed 
methods based on the StarCraft domain. 
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2.     Introduction 
 
As reported in the recent Air Force Chief Scientist “Technology Horizons” [3], natural human 
capacities are becoming increasingly mismatched to the enormous data volumes, processing 
capabilities, and decision speeds that technologies either offer or demand. Two key areas in 
which significant advances are possible in the next decade are: (i) increased use of autonomy and 
autonomous systems, and (ii) augmentation of human performance. Both areas can achieve 
capability increases and cost savings via increased manpower efficiencies and reduced manpower 
needs. Mission planning is one of the domains which will greatly benefit from such capability 
increases and cost savings. 
 
The complex and real-time nature of these problems requires commanders to make timely 
decisions and makes a complete search of the domain for planning impractical. To move towards 
autonomous adaptive replanning, we require methods of determining that a plan has deviated 
from its expected performance, and performing adaptive replanning as necessary to reduce the 
differential caused by these deviations. 
 
A key obstacle in developing planning and adaptive replanning methods for large-scale real-
world problems is the so-called “curse of dimensionality” - the state space explosively grows as 
the number of state variables (features) increases, making planning/replanning methods 
prohibitively expensive to compute. This project aims to improve the scalability of case based 
planning/replanning in domains with high-dimensional state spaces by automatic feature 
selection. To reach this goal, the project pursues two complementary research objectives: (i) 

developing efficient feature selection algorithms for case based planning (CBP), and (ii) 

evaluating and demonstrating the effectiveness of feature selection for CBP. 

 

There are two main challenges in feature selection for CBP: how to evaluate the relevance of a 
feature subset without supervised class label and how to validate the result of a feature selection 
algorithm for CBP. In this project, we address both challenges by solutions which are centered on 
an innovative way of measuring case similarity. The basic idea is to treat the plan portion of a 
case as its supervised label, and represent each label in the form of a sparse matrix, enabling the 
design of a general loss function to measure the similarity (or distance) between two cases based 
on their plan portions. Given the general similarity measure, we have developed two major types 
of feature selection methods for CBP, wrapper and filter, which differ mainly in how they 
evaluate the quality of a feature subset. A wrapper feature selection method evaluates the quality 
of a feature subset based on how similar the plan of a case to the plan of its nearest neighbor (the 
case with the most similar situation) measured based on the subset of state features. In contrast to 
a wrapper method, a filter method does not decide feature relevance based on nearest neighbor 
search, but based on how well a subset of state features distinguishes cases of dissimilar plans.  
 
Based on the general similarity measure, we have also developed an efficient result validation 
procedure based on N-fold cross validation and demonstrated the efficiency and efficacy of the 
proposed methods based on the StarCraft domain. 
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3.     Methods, Assumptions and Procedures 
 
 
3.1.   Background and Related Work 
 
3.1.1.  Case Based Planning 

 

Planning can be viewed as a sequential decision making process. Formally, such processes can 
be modeled as a Markov Decision Process (MDP) [10]. A MDP is represented as a 4-tuple 
(S,A,T,R), where: S is a set of states, A is a set of actions, T is a transition function, and R is the 
reward function. In a factored MDP, the set of states S is determined by a set of state variables 
(features). In the planning system, an existing intelligence surveillance and reconnaissance/ 
assessment service provides information to build a representation of the current state of the 
executing plan. By understanding the state variables, the CBP system can retrieve relevant 
actions to be executed. The case base represents individual plans as Markov Chains, containing 
sequences of states and actions which occurred to reach an objective. Because this is a model-
free approach, we do not have complete models of the entire state space and therefore the 
probability of an action a moving from the current state s to the desired state s′ is not 1. Similarly, 
we are also not undertaking the modeling of the transitional probabilities from state to state. CBP 
allows uncertainty management by drawing upon past experience to choose an action set based 
on the current state variables. Therefore, when the state variables are defined well enough, it can 
then be used to retrieve Markov Chains from the experience base to plan by providing sequences 
of states and actions to solve current objectives. 
 
A central challenge to the EBAR project is to automatically construct and identify optimal or 
near-optimal feature sets for case retrieval and plan monitoring. Features are the sensors and 
variables that describe the current state of the environment. A concise and complete feature set is 
critical for managing the size of a search space and ensuring a decision maker, human or 
synthetic, has enough information to make an appropriate decision. In practice, features are 
typically manually selected and derived by subject matter experts. Manually selecting features is 
expensive, error prone, and inflexible. An automated method for feature selection would be much 
more robust, less costly, and more capable in dynamic domains. 
 
3.1.2.   StarCraft Simulation Platform 

 
In the DEEP research platform [2], the simulation is the StarCraft real-time strategy game. 
StarCraft is a popular military science fiction force-on-force real-time strategy game developed 
by Blizzard Entertainment which was originally released in 1998. Game play includes force 
against force engagements where a red and blue force build an economy, base, and depending on 
choices made develop certain capabilities to employ against their enemy. High level aspects of 
the game are the development of the economy vs. the development of the army. If one builds too 
heavy of an economy they are susceptible to attacks from an opponent’s army. However, the 
benefit of building a strong economy is to improve technology and build a more formidable army 
later in the game. There are many other important aspects to the game which help a player 
achieve victory, such as effective scouting of the opponent, setting up proper defenses, and 
countering the opponent’s capabilities, etc. This domain is chosen by the DEEP team as the 
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simulation platform for the following main reasons. 
 

• Large case base: one of the most important requirements of a domain for experience-based 
reasoning is the ability to obtain a large corpus of cases to use to reason over. StarCraft has 
the ability to save a “replay” of a game and there are a huge number of data stores of these 
replays readily available.  

 

• Complexity: although the simulation engine is deterministic, because of the large action 
space it is unlikely to see the same outcomes given a set of actions in a game.  

 

• Active research domain: this domain has been used in several United States Navy 
sponsored contracts and is also an active research domain by a number of academic 
institutions.  

 

• Abstract Command and Control domain: this domain allows planning and coordination of 
multiple entities throughout the full spectrum from tactical to strategic military operations.  
 

• Other benefits: such as asymmetric forces (different races, planning and coordinating 
differing objectives), uncertainty, quantitative metrics, real-time constraints, rich feature set, 
and interface for human interaction.  

 
The DEEP team is currently focusing on the strategic level of planning as they believe that is 
where experiential reasoning is well suited. There are components of the application 
programmers interface (API) that allow the use of “managers” to handle the tactical level tasks of 
the game. These managers include: 
 

• Resource manager - this handles the gathering of resources in the game including the 
production of these resource gatherers.  

 

• Building manager - this alleviates the need of spending time writing algorithms to deal with 
coordinate placement on the map.  

 

• Attack manager(s) - they decide tactical-level actions and behaviors to apply to specific 
units.  

 
Figure 1 shows a simplistic version of the StarCraft planning architecture and how the DEEP 
system interacts with it. The central component is the Blackboard which is a GOTS tool (see [2] 
for more information) to support easy, rapid research and testing. The blue objects are the 
information passed between the StarCraft APIs and DEEP components. The “situation” object is 
the set of information populated by the StarCraft APIs. This contains information such as map 
details, unit details, building details, red information, blue locations, etc. The features being 
tracked is currently under development. The current implementation of a plan in this domain 
consists of capabilities you wish to develop at certain stages of the game. The actions to develop 
these capabilities include: types of buildings and structures to build, upgrades to research, and 
number and compositions of units to create in order to achieve certain capabilities. 
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Figure 1. StarCraft Planning Architecture (Provided by the DEEP Team) 

 
3.1.3.   StarCraft Case Base 

 
Once the DEEP team settled on StarCraft as a domain of simulation, a case base had to be 
developed to support the CBP process. These steps included designing case structure, selecting 
features, formal logic for a StarCraft plan, and automation logic to convert StarCraft replays into 
cases. 
 
As described in the previous section, one benefit to utilizing StarCraft as a simulation domain is 
the large amount of publicly available replays. Using built in game functionality to save replays, 
it is easy to extend the case base over time. A replay is a saved game that can be viewed later on 
or even executed again to monitor what happened. Combining an open source API for parsing 
replays with a developed programmatic option to automate reading the replays and parsing out 
the required information, the DEEP team was able to quickly generate thousands of cases. 
 
Before creating the case base, the DEEP team conducted internal discussions using empirical 
evidence of game play to support a selection of features that would support initial case 
construction. It was also decided that the cases to be used would be one player versus one player 
matches, so no games with more than two players are implemented in the platform. The 
importance of what features to use was an iterative process. As the project continued the team 
reviewed the work of other teams that were developing their own AI systems, such as bots, to be 
used at the StarCraft AI conference such as the Berkeley Overmind Project 
(http://overmind.cs.berkeley.edu) to see what other features were being created by the AI 
community for possible inclusion into the DEEP system. 
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Table 1. Features for StarCraft Case Base 

Game Features Player Features 
Unique Identifier Player name 
Replay name Player race 
Map name Count of buildings built 
Winning player name Count of units built 
Winning player final state lattice Count of workers built 
Actions per minute of game Expansions and their game frame 

 Final player state lattice 
 Vector of player states by time step 
 Unit type and production count at each time step 

 
Table 1 lists the current set of features used for describing a case in the existing StarCraft case 
base. A time step in each case is two thousand game frames, so for some of the features, the 
feature values were measured over every two thousand frames. The frames are how the game 
steps through the simulation and they run at 24 frames per second. The state lattice is based on 
the build tree (or tech tree expansion) of StarCraft (Broodwar Expansion Pack). Specific 
buildings enable new features and capacities like: building new types of combat units and 
buildings, researching new capabilities, etc. The SCReplay (www.cs-replay.com), an open-
source java based project was utilized to read contents of saved StarCraft games. This approach 
enabled the DEEP team to effectively reduce the complexity of representing an entire game state 
through segmentation. 
 
The DEEP team feels feature selection for this project is not complete and requires future work to 
support better plan generation, more specific player information, more specific mapping 
information, among others. Most of the information in a case is used by retrieval to obtain the 
best match to a given situation; however there is part of the case structure that is utilized later on 
by the plan execution agent to implement the plan. All the information under the units at each 
time step describe what was built and at what time. This is the build order the player used in the 
game and consequently, is the action list the plan execution agent will use to construct buildings 
and build units. The data for player expansions is also used to allow the plan execution agent 
know when to build an expansion. Figure 2 provides an example of feature data and the XML 
case base for StarCraft. 
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Figure 2. An Example of Feature Data and Case Base for StarCraft (Provided by the DEEP Team) 

 
3.1.4.   Feature Selection 

 
Feature selection, the problem of automatically selecting a subset of the original features for a 
learning task, has been an active field of research for many years (reviewed in [7,12,15]). 
Various feature selection techniques can be categorized into supervised [1,7-9] and unsupervised 
[5,6,20] depending on the availability of class labels. Let D = {(x1,y1),…, (xn,yn)} be a training set 
of n labeled instances, where x ∈ ℜd, defined by d features X1,…,Xd, and y is the value of the 
class variable Y . The goal of supervised feature selection is to select a minimum subset S∗ ⊆ X 
such that p(Y |S∗) = p(Y |X), where p(Y |S∗) and p(Y |X) represent the conditional distributions of 
class values given feature values in S∗ and X, respectively [9]. Due to the exponential search 
space w.r.t. the dimensionality and the imprecise approximation to p(X,Y) by a training set, it is 
neither feasible nor appropriate to search for S∗. In practice, feature selection algorithms resort to 
a combination of practical evaluation measures and efficient search strategies. 
 
 

 
 

Figure 3. A General Framework of Feature Selection 

Figure 3 shows the general framework of a feature selection process. Various feature selection 
algorithms differ mainly in the subset generation (search strategy) and subset evaluation 
components. A number of search strategies can be used for generating a candidate feature subset 
for evaluation, such as complete search, sequential search, or genetic programming. Various 
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algorithms can also be broadly grouped into wrapper [8, 13] and filter [14, 21] methods, 
depending on the evaluation measures. A wrapper method requires a predetermined learning 
algorithm and uses the performance of the learning algorithm applied on the selected subset to 
determine which features are selected. It usually gives superior performance as it finds features 
better suited to the predetermined learning algorithm than filter methods, but it also tends to be 
more computationally expensive. A filter method tries to evaluate the goodness of a feature or 
feature subset by exploiting the intrinsic characteristics of the training data without involving any 
learning algorithm. Some popular filter measures include distance, information gain, dependency, 
and consistency measures [12]. A stopping criterion determines when the feature selection 
process should stop - usually, when a specified number of features is reached, or subsequent 
addition (or deletion) of any feature does not produce a better subset. A straight-forward way for 
result validation is to directly measure the feature selection result based on prior knowledge 
about the set of relevant features of the data. When prior knowledge is not available as in most 
real-world applications, we can monitor the change of learning performance with the change of 
features. For example, given a finally selected feature subset, we can compare the generalization 
errors on an independent test set made by the two classifiers learned on the training set using the 
full set of features and the selected subset of features. 
 
Although feature selection has been extensively studied in supervised learning, it has received 
little attention in the areas of case-based reasoning and planning. To the best of our knowledge, 
Mishra et al.’s work on situation assessment for plan retrieval [16] is the only study that 
addresses feature selection for case-based planning. A situation is a high-level representation of 
the state of the world, and situation is predicted using a decision tree based situation-
classification model based on “raw” state features. Situation prediction is further used for the 
selection of relevant “knowledge intensive” features which are derived from the basic 
representation of the environment. The similarity of cases is computed based on the selected 
relevant features. The feature selection performed here is “knowledge” centered and closely 
related to state space reduction by subtask decomposition [4]. The feature selection methods 
proposed in this proposal are “data” centered, which directly work on the case base to identify 
relevant features without relying on the knowledge of subtask decomposition of the problem. 
These methods can be integrated with the knowledge-centered approach in the future. 
 
 
3.2.   Proposed Methodologies 
 
In this section, we present our proposed methods for automatic feature selection for case-based 
planning (CBP), assuming a case base is already constructed according to a set of predefined 
features by subject matter experts (as illustrated in Section 3.1.3). In Section 3.2.1, we propose a 
novel similarity measure for the plan portions of cases, which serves as a common basis for 
feature quality evaluation in the feature selection methods developed in Section 3.2.2 and the 
result validation metrics in Section 3.2.3. 
 
3.2.1.   General Similarity Measure for Plans 
 
Like feature selection for supervised learning, feature selection for CBP also needs to address 
two key issues: (1) efficient search of the exponential space of possible feature subsets, and (2) 
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efficient and effective evaluation of the relevance of a feature or feature subset. Various search 
strategies developed for supervised feature selection can be adopted for CBP. However, the 
feature evaluation measures used in wrapper and filter feature selection methods for supervised 
learning are not readily applicable to the CBP setting due to the lack of traditional class labels for 
cases. Unlike in supervised learning where the label of each instance is a symbolic or numeric 
value of a random variable, in CBP, how to define the label for each case and measure the 
similarity among different labels is an open research issue.  
 
In our approach of feature selection for CBP, we treat the plan portion (the sequence of actions) 
in each case as the case label, and apply a general similarity measure for measuring the match 
between the two label values of a retrieved case and a test case.  Specifically, in the current 
implementation of the case base, the plan portion of each case can be viewed as a sparse matrix 
P, where each column vector pt represents a snapshot of actions taken at a given time step t, and 
each row vector p′

r represents the execution sequence of a given action a across all time steps, 
and each value pr;t in the matrix represents how many times action a is executed at time step t. In 
the case base example in XML format (Figure 2), the row <TimeRange> shows a truncated 
(from 70 time steps) sparse vector encoding the number of units built for Unit named “111”. For 
efficient storage purposes, the XML case base only stores the row vectors for actions that are 
taken at least once for each case. The sparse matrix representation eases our conceptual 
discussion of the similarity measure, and the conversion from XML format is trivial. 

 
Given the above matrix representation, we can define a general loss function which 
measures the cost of retrieving plan  when the true plan of case x is P as: 
 

  , 
 

                                            (1) 

where T is the total number of recorded time steps,  is a distance function between two 
sparse vectors, and wt is the weight assigned to each time step t. The general loss function can 
have various forms depending on the choices of the distance function and the weight distribution. 
For example, we can use the well-known Cosine distance and l1 and l2 norms between two 
vectors for the distance function. For the weight distribution, besides equal weighting, we can 
assign higher weight for earlier time steps assuming differences in actions that occurred earlier in 
two plans will have bigger impacts on the outcome. Under this general form of loss function, the 
labels of two cases are considered more similar if the loss function returns smaller values. 
 

 
3.2.2.   Feature Selection Methods for CBP 

 
Based on the general similarity measure proposed earlier, we can develop both wrapper and filter 
types of feature selection algorithms for CBP. The basic idea of wrapper feature selection is to 
repeatedly generate candidate feature subsets following a search strategy and rely on the 
performance of a predefined learner/planner to evaluate the goodness of a feature subset. In CBP, 
to determine the plan of a new case (representing a new situation), the nearest neighbor (the case 
with the most similar situation to the new case) from the case base is retrieved, and the plan of 
the nearest neighbor is recommended as the candidate plan for the new case. Ideally, given the 
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optimal set of features to represent all possible cases of a given task and a sufficiently large case 
base with known optimal plans, the nearest neighbor of any new case would recommend a plan 
that is as close as possible (if not the same) to the optimal plan for the new case. This is the 
essence of why CBP works. Obviously, the nearest neighbor returned is sensitive to the set of 
state features used in calculating the similarity (or distance) between two cases. Therefore, we 
can develop a wrapper feature selection method which evaluates the quality of a feature subset 
based on how similar the plan of a query case to the plan of its nearest neighbor (determined 
based on the subset of state features) for all cases in the case base. Intuitively, the higher the 
overall similarity, the better the feature subset is. We next formally introduce the feature quality 
measure for wrapper feature selection in the CBP setting by extending the idea of wrapper 
feature selection based on nearest neighbor learning [11, 17]. 
 
Given a training set D = {(x1,y1),…, (xn,,yn)}, where x ∈ ℜd  and y is the value of the class 
variable Y, and a test instance x with true class label y, a nearest neighbor classifier yˆ = f(x) 
decides the label of x by x’s nearest neighbor xN

i in D (i.e., yˆ = yi
N ). A loss function L(y,yˆ) 

measures the cost of predicting yˆ when the true label of x is y. For numerical labels (as in 
regression), commonly used loss functions are squared loss (L(y,yˆ) = (y − yˆ)2) or absolute loss 
(L(y,yˆ) = |y − yˆ|). For categorical labels (as in classification), zero-one loss (L(y,yˆ) = 0 if y = 
yˆ, L(y,yˆ) = 1 otherwise) is typically used. Given a feature set S, the quality of S for nearest 
neighbor learning is measured by the aggregated leave-one-out loss of the training set based on 
the feature space defined by S: 
 

  , 
 

                                            (2) 

where yi and yj
N are the labels of xi and its nearest neighbor xj (i =   j) in D according to the subset 

of dimensions in S. The goal of feature selection for nearest neighbor learning is to select a 
subset S such that  is minimized. A wrapper method can be developed by coupling an 
efficient search method such as sequential forward or backward search with the evaluation 
measure in Equation (2). 
 
Given the general loss function in Equation (1), we can extend Equation (2) to the following 
feature quality measure for CBP: 
 

  , 
 

                                            (3) 

where Pi and PN
j are the labels of case xi and its nearest neighbor xj (i =   j) in the training case 

base retrieved based on S. We can combine this measure with sequential backward search or 
sequential forward search to come up with different wrapper feature selection methods for CBP. 
 
In contrast to a wrapper method, a filter method for CBP does not rely on the nearest-neighbor 
based planner in deciding feature relevance. A filter method decides the relevance of a feature 
subset based on how well a subset of state features distinguishes cases of dissimilar plans. Like 
wrapper methods, the key of feature subset evaluation for filter methods is also the similarity (or 
distance) measure for the plan portions of cases in a case base. Here we propose two approaches 



Approved for Public Release; Distribution Unlimited.  
11 

 

to apply the general loss function in Equation (1) to build filter methods. 
 
The first approach is to directly use the general loss function in Equation (1) with existing filter 
methods built for regression problems such as RReliefF [19]. The basic idea of RReliefF is to 
weight and rank each feature based on the following heuristic. Over all pairs of instances, the 
weight of a feature is higher if the distance between feature values of a pair of instances is more 
positively correlated with the distance of their class labels, and the weight is lower if the 
correlation is more negative. For regression problems, the distance of class labels is 
straightforwardly measured by squared or absolute distance between two numerical values. For 
CBP, Equation (1) enables us to measure the distance between the labels of two cases. 
 
The other approach is to indirectly use Equation (2) with existing filter methods built for 
classification problems such as FCBF [23] and mRMR [18]. The basic idea of these methods is 
to measure the relevance and redundancy of features based on mutual information measure. In 
order to adopt these methods, we need to have a set of categorical labels for labeling each of the 
cases. This leads to an interesting task - clustering all the cases in a case base into a number of 
distinct groups based on the plan portion of each case and the distance measure in Equation (1). 
Methods like hierarchical clustering and spectral clustering which only require a pairwise 
distance matrix for all cases are suitable for this task. After the clustering preprocessing step, 
existing filter methods for classification can be applied on the transformed case base with 
categorical class labels. 
 
Compared with the direct approach, the indirect approach entails the cost of clustering and 
validation of clustering results. Nevertheless, this cost only occurs once during a preprocessing 
phase. Besides the benefit of enabling efficient filter feature selection, clustering cases based on 
plan portions may reveal interesting patterns that correspond to high-level strategic plans and 
shed light on how to improve the case base construction.  
 

 
3.2.3.   Result Validation Metrics of Feature Selection for CBP 

 

We now address how to validate the result of feature selection for CBP. Following the basic idea 
of result validation in supervised feature selection, given a finally selected feature subset, we can 
compare the performance of the case base on recommending plans for an independent test set 
based on the full set of features and the selected subset of features. The current practice of the 
DEEP team resorts to a handful of predetermined test cases (known game situations with 
unknown plans) in evaluating the performance of CBP based on the full set of manually 
determined state features. Given a test case, the quality of the retrieved nearest neighbor case can 
be determined by actually executing the plan of the retrieved case and monitoring the outcome of 
the plan (winning or losing to the opponent player). Although this evaluation practice has 
demonstrated the promise of CBP for the StarCraft domain, it has three main limitations for 
evaluating the performance of feature selection for CBP. First, real-time execution of the plan of 
a retrieved case is very time consuming, and therefore, is inefficient for repeatedly evaluating a 
number of different feature subsets produced on the same case base by various proposed feature 
selection algorithms or under different parameter settings of the same algorithm. Second, the 
outcome of the plan execution does not always reflect the true merit of a strategic plan conveyed 
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by a retrieved case, and therefore, is not reliable for validating the feature subset used for CBP. 
As mentioned earlier, the execution of the plan relies on an attack manager that provides tactical-
level actions and behaviors to apply to specific units. The current heuristics adopted by the DEEP 
team for the attack manager are not always optimal for making the best use of the strategic plan 
of a retrieved case. Third, due to the small size, the current set of test cases may not be 
representative enough for various possible situations.  
 

To address the above challenges of result validation, we need a practical validation procedure 
which does not require real-time execution of a retrieved plan. We adapt the widely used 
procedure of N-fold cross validation (CV) in supervised learning, and implement a CV procedure 
for CBP. Given a large case base and a feature selection algorithm, the CV procedure randomly 
partitions the entire case base into N equally sized folds, and repeatedly assigns one of the N 
folds as an independent test set and the remaining N − 1 folds together as a training set. For each 
training and test assignment, the feature selection algorithm is only applied to the training set to 
produce a finally selected subset. The effectiveness of the feature selection algorithm is measured 
based on the overall loss of every case in each of the N test sets compared to its nearest neighbor 
retrieved from the corresponding training set based on the selected feature subset. The same loss 
function defined in Equation (1) is used here to measure the loss of a test case to its nearest 
neighbor. It is worth pointing out that in a wrapper method for CBP, Equation (1) is used to 
measure the quality of a candidate feature subset based on the “leave-one-out” loss of the training 
set (as in Equation (3)), while in result validation of any feature selection algorithm, Equation (1) 
is used to measure the effectiveness of the algorithm based on the CV loss of the entire case base. 
The proposed CV procedure alleviates the problem of a small hand-picked test set, and the use of 
the general loss function in the CV procedure avoids the burden of real-time execution of 
retrieved plans. 
 
Alternatively, we can also use prior knowledge of feature relevance for result validation. Al-
though complete knowledge of the relevance of all possible features for the StarCraft domain is 
unavailable, the DEEP team does have knowledge of the relevance of a handful of manually 
selected features for the current case base. We can manually add irrelevant and/or noise features 
to the case base, and expect the proposed feature selection algorithms to successfully eliminate 
these added features from the selected feature subset.  
 
 
4.     Results and Discussion 
 
4.1.   Case Similarity Analysis 

As described in the discussion of the general seminary measure, each unit-type has associated 

with it a weight that indicates the impact of that unit on the case. In all experiments we uniformly 

set all weights to one. For experiments involving the action plan matrix, each column vector (unit 

type) was scaled using min-max normalization to set the matrix values between 0 and 1. 

Additionally, to measure the distance between two vectors we experimented with cosine, l1, and 

l2 measures. The results reported below use the l1 measure unless otherwise noted, which was 

found to slightly increase the performance of the algorithms under study. The case base used for 

all experiments contained 60 cases from a variety of Star Craft replays. 
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All feature selection algorithms developed in this project rely on the proposed general similarity 

measure to evaluate the match between two cases. Here we examine some performance 

characteristics of the similarity measure to validate its use in other areas of the study. Table 2 

reports the average leave one out cross validation (LOOCV) performance when measuring the 

similarity between a query and its nearest and farthest neighbors, with respect to the similarity 

measure, along with the average pairwise similarity between a query and all other cases in the 

case base. To clarify, the nearest neighbor is the case that has the most similar action plan matrix 

(as measured by the similarity measure) as the query case, and the farthest neighbor has the most 

dissimilar action plan matrix. 

 

Table 2. LOOCV Performance of the Proposed Similarity Measure 

Nearest Neighbor Farthest Neighbor Average Neighbor 

0.51 ± 0.10 0.05 ± 0.03 0.28 ± 0.07 

Since the action plan matrices are normalized and unit weights are used on all columns, the 

values of the similarity measure are bounded between 1.0 (most similar) and 0.0 (least similar) in 

all experiments. This shows that the nearest neighbor between a query case and all others in the 

case base scores around midway in the possible range of the loss function, which is somewhat 

lower than could be expected, and possible explanations for this are given in the following 

discussion section. The furthest neighbor is near 0.0, while the average similarity was between 

the two, as expected. Further experiments show that the similarity between the plan matrix of a 

case and itself, L(Pi, Pi) = 1.0, and that the measure is reflexive: L(Pi, Pj) = L(Pj, Pi) for any cases 

i and j in the case base. These results show that the proposed measure is able to separate similar 

and dissimilar cases from one another, and is reasonable to use as a basis in the later feature 

selection experiments. 

 

4.2.   Wrapper Feature Selection 

Here we study the performance of the wrapper based feature selection algorithm described in 

Section 3.2.2. The goal of this experiment is to determine the best subset of the original seven 

indexing features to use to index the case base. The “best” subset of features is the one in which 

the nearest neighbor to a query case when measured in that subspace gives the highest action plan 

similarity value. In this context, nearest neighbor distance between cases is measured with 

respect to the subset of seven features currently used to index the case base, so each case is 

represented by a k-component vector, where 1 ≤ k ≤ 7. Due to the categorical nature of the 

features, normal distance measures (i.e. Euclidean and Manhattan, etc.) are not applicable. 

Instead, distance is calculated as: 

, dist(v, ¢v ) =
1
k

I(vi, ¢vi
i=1

k

å )
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where  is the indicator function returning 0 if the arguments are equal, 1 otherwise, and  

denotes the i
th

 component of vector. The wrapper experiment implemented here performs a 

sequential forward subset search of the set of seven features used to index the case base. For a 

given feature subset, each feature outside of the subset (each candidate feature) is added to the 

subset in turn, and the LOOCV similarity of the plan matrices is measured. The feature that 

results in the highest LOOCV similarity is added to the subset, and the search continues through 

the remaining candidate features. This process terminates when no candidate feature improves 

the LOOCV similarity above the value measured on the current subset. To begin the search, each 

feature is evaluated individually. Table 3 reports the average value and standard deviation on the 

LOOCV for the best feature subset found by the wrapper process and the LOOCV similarity 

when the full feature subset is used. 

 

Table 3. LOOCV Similarity Based on the Full Feature Set and Selected Subset by the Wrapper 

Full Feature Set Wrapper Selected Feature Subset 

0.38 ± 0.12 0.42 ± 0.14 

As we can see from this experiment, finding the nearest neighbor to a query case in the subspace 

of the selected feature subset identified by the wrapper algorithm outperforms the nearest 

neighbor found in the full set of features. The feature subset identified by the wrapper consists of 

three features out of the possible seven (blue race, red race, and red state), and is also best 

performing subset out of any combination of the seven given features, as found by doing an 

exhaustive search over the 127 possible feature subsets (the power set excluding the empty 

subset).  

The results of Table 3 are also consistent with the results shown in Table 2. When using either 

the full set or the subset identified by the wrapper we see that the similarity between a query and 

its nearest neighbor is greater than that of itself to all other cases (the Average Neighbor of Table 

2). We do note, however, that the similarity of the nearest neighbor in either scenario of Table 3 

is significantly less than the most similar case to the query that exists in the case base, as 

evidenced in the first column of Table 2. This finding indicates that there is more information in 

the action plan matrix than is currently being captured in the feature subset, at least from a 

nearest neighbor query response perspective. These findings justify the use of feature selection 

for case based retrieval, but we do note that performing wrapper feature selection is 

computationally expensive since it involves doing many nearest neighbor comparisons during the 

subset search. In the following section, we consider filter feature selection methods to alleviate 

this cost. 

 

4.3.   Filter Feature Selection 

The results in this section consider selecting a relevant subset of index features without resorting 

to measuring the query similarity performance to judge the goodness of a selected subset. In 

I(×, ×) vi
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addition to the 7 known indexing features, we added irrelevant features to the case base. The 

purpose of such an experiment is to verify the proposed feature selection algorithms are capable 

of selecting the most relevant features when a large set of (potentially irrelevant) features is 

available from the case base. In our experiments, each additional feature is a uniform random 

variable over 10 categorical values, since the relevant features are also categorical over a 

typically small number of possible values. In addition to comparing wrapper feature selection 

against no feature selection, we also developed a Relief-based filter feature selection algorithm 

and present the results in Figure 4. For these experiments, we adopted a 10-fold cross validation 

procedure, where the data is partitioned into 10 equal sized groups, 9 of which are used to train 

the feature selection algorithms, and each case in the holdout fold is used a test query; the 

similarity to its nearest neighbor in the training data is reported. This procedure is repeated for 10 

random shuffles of the data, and the average similarity across all shuffle and fold experiments is 

reported for each algorithm. 

 

 
Figure 4. Average Query Similarity for Filter, Wrapper, or No Feature Selection as the Number of 

Irrelevant Features Increases from 0 to 50 

Unlike the wrapper feature selection algorithm, the Relief-based filter feature selection algorithm 

does not use the similarity performance of its candidate subset to guide the search nor as a 

stopping criterion. This requires the filter approach to set the number of features to select 

beforehand. We experimented with selecting subsets of size one through seven; in general, 

selecting seven features gave the best performance of the algorithm and is reported in Figure 4.  

Additionally, the filter algorithm functions by searching the local neighborhood for cases with 

similar and dissimilar action plan matrices, and the number of neighbors to consult is controlled 

by a parameter. We experimented with one, three, and five neighbors across all scenarios of 

irrelevant features and numbers of selected features and found that five nearest neighbors gave 

slightly improved performance and is therefore the setting used in this study. It should be noted 

that varying the number of selected features from three to seven did not significantly alter the 

query results, nor did using different numbers of nearest neighbors, so the algorithm is robust to 

these parameters. 
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As shown in Figure 4, for any number of irrelevant features under study the wrapper feature 

selection algorithm performed the best out of the three approaches, while the filter based 

approach is the worst by a small margin. For all numbers of irrelevant features, each algorithm 

outperforms selecting a random case in response to a given query (0.28 ± 0.12). The wrapper 

performance shown in Figure 4 follows a surprising increasing trend as the number of irrelevant 

features rises from 0 to 50. As described in the previous section, the best feature subset found by 

the wrapper (and best overall from any subset of the seven indexing features) produced average 

similarity scores of around 0.42 on average, and this result is repeated for the case of 0 irrelevant 

features in the figure. However, as more irrelevant features are added to the data set, the retrieval 

similarity actually increases slightly above this value. This is due to coincidental correlations 

among a few of the randomly generated irrelevant features with the action plan matrices. Since 

the size of the case base is fixed and relatively small throughout the experiments (60 cases in 

total), when more irrelevant features are present, the likelihood increases that some will show 

false correlations with the action plan measure. This overfitting effect would likely vanish when 

larger case bases are used. 

The diminished performance of the filter feature selection algorithm can also be explained.  

When no irrelevant features are present, the feature selection prefers: blue race, red state, red 

race, blue state, blue player name, map name, and red player name in that order, with a 

significant drop in relevance weights after blue state is selected. The first three features 

correspond to the three selected by the wrapper procedure, indicating that the Relief-based filter 

feature selection algorithm that we developed is effective when no irrelevant features are present. 

Table 4 presents the average subset precision for the filter algorithm when increasing numbers of 

features are present. Out of the seven features selected by the filter algorithm in each setting, an 

increasing number of them are irrelevant when the number of irrelevant features in the full 

feature set increases. In each case, at least two of the relevant selected features came from the set 

{blue race, red race, red state}, the optimal subset of features, however, false correlations led the 

selection algorithm to fill the remainder of the subset with irrelevant features, leading to the 

query similarity performance seen in Figure 4. 

 

Table 4. Average Precision of Filter as the Number of Irrelevant Features Increases from 0 to 50 

# Irrelevant 

Features: 

0 1 5 10 20 50 

Avg. Precision 1.0±0.0 0.86±0.0 0.54±0.10 0.36±0.13 0.25±0.12 0.15±0.10 

A similar comparison of feature subset quality for the wrapper approach is given in Table 5. It is 

more difficult to get a sense of the general subset quality in the wrapper approach since for each 

fold in each shuffle of the data a different subset size can be selected, as opposed to forcing the 

subset set to be a fixed number as in the filter experiment. Table 5 therefore reports the average 

relevant subset recall, or the number of relevant features actually selected in each feature subset 

found by the wrapper. These numbers indicate that about 3 or 4 relevant features are selected on 

average, and these features include the optimal set of features found in the earlier wrapper 

experiments. This accounts for the consistently better performance of the wrapper algorithm in 



Approved for Public Release; Distribution Unlimited.  
17 

 

Figure 4. In addition to these features, the wrapper tends to select a few irrelevant features in 

each subset, giving rise to the slight improvement in query similarity noted in Figure 4. On a 

larger case base, the irrelevant features would be less likely to exhibit such correlations and thus 

be less likely to be selected by the wrapper procedure. 

 

Table 5. Average Recall of Wrapper as the Number of Irrelevant Features Increases from 0 to 50 

# Irrelevant Features: 0 1 5 10 20 50 

Avg. Recall 0.56±0.22 0.56±0.22 0.49±0.22 0.46±0.25 0.45±0.22 0.41±0.24 

 

4.4.   Case Clustering 

The final part of experimental results is concerned with the ability to cluster cases based on their 

action plan matrices.  High quality clustering results would enable a single value (the cluster ID) 

to replace the action plan matrix as the class label for each case in the data set.  This change 

would allow the full contingent of supervised filter feature selection algorithms to be tested on 

the case base data without the need for special engineering (as in the Relief algorithm described 

above).  To this end, we experimented with an implementation of an agglomerative hierarchical 

clustering algorithm to cluster cases based on action plan matrices using the proposed general 

similarity measure described in Section 3.2.1. 

There are several parameters to set in an agglomerative clustering algorithm, such as which 

cluster member to use to measure distance between clusters (Min, Max, or Average linkage), and 

when should the agglomerative process terminate (at some specified number of clusters, or once 

the nearest remaining clusters exceed some distance threshold).  Due to time constraints on the 

project, we did not perform a rigorous test across the parameter space, but we did try several 

variations and report clustering result summary statistics in Table 6. 

 

Table 6. Summary Statistics of Clusters Found by Hierarchical Clustering Using Min Linkage 

Number of Clusters Average Cluster Cohesion Average Cluster Separation 

4 0.46±0.03 0.32±0.05 

These results report findings based on four clusters, capturing 40 out of 60 cases.  The remaining 

20 cases were not merged into clusters with these parameter settings. The four clusters all had 

high cohesion scores, indicating internally similar action plans, while similarity between clusters 

was lower, at around 0.32. These trends indicate that these clusters might be located somewhat 

near each other, though with some specific structural differences. It is worth pointing out that 

when the 20 singleton clusters are added to the results the separation between groups decreases to 

0.21; a lower similarity score than the average similarity between randomly chosen cases.  

Subjective validation is needed at this stage to assess whether or not the cluster members are 
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truly similar to one another, either by manual inspection of the replay data that generated the 

cases, or automatic execution of the strategy information encoded in the cases. Given the short 

duration of this project, we were unable to investigate these results further at this time, but note 

that the preliminary results do suggest that clustering of cases is feasible and can provide 

meaningful information. Furthermore, any improvements made to the general similarity measure 

will also positively impact the clustering results. Once high-quality clustering results are 

achieved and verified, the cluster labels can simply be used in supervised learning experiments to 

continue feature selection algorithm improvements for case based planning. 

 

4.5.   Discussion 

One key thing to notice from Table 2 is that the average similarity between any case and its 

nearest neighbor (excluding itself) is only around 0.51. If the case base contains similar cases, as 

would be reasonable to expect, then this result seems low. This can be explained from two 

perspectives: either there were too few cases in the sample case base, or the similarity measure 

used is too rigid to fully capture case similarity. The first possibility may be easily explored by 

working with a case base engineered to include several clusters of cases, where each cluster has 

been subjectively observed to contain similar cases. The rigidity of the proposed similarity 

measure is in respect to the measuring of column vectors against one another. If we consider two 

cases which were identical except for an initial execution delay, then the current similarity 

measure will give a poor similarity score despite the two plans being different only with respect 

to the step in which they were initiated. Possible future extensions to the measure can include 

forms of dynamic time warping which can account for such temporal variations and make the 

proposed measure more robust. 

From the wrapper experiments we can conclude that feature selection shows promise in enabling 

more compact indexing structures that can outperform the full set. We can also see that the set of 

static features does not capture the spread of information that is contained in the action plan since 

there are more similar cases for given queries than can be found using a nearest neighbor search 

in any subset of the seven current features. We could view the nearest neighbor retrieval as a 

classification algorithm. In this sense, other classification algorithms could be used to retrieve 

more similar cases and may be more successful (we see there is room for improvement by 

looking at the 0.42 results from exhaustive and 0.51 from optimal). 

Filter feature selection experiments demonstrated that feature selection for CBP could be 

conducted without performing expensive querying to measure the goodness of a feature subset, a 

necessary capability when considering large case bases with many features. The experiments 

conducted along this line also pointed out two important areas to consider when pursuing future 

research. First, the set of indexing features must be related to the class label. Second, appropriate 

filter feature selection techniques must be chosen depending on the data composition of the 

available feature set. Since a filter feature selection algorithm relies on the intrinsic relationship 

between features and a class label (or the action plan matrix in this work), there must be a strong 

predictive relationship between these two entities in order for a filter strategy to work.  In these 

experiments, we have learned that several of the currently used indexing features yield little 
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information with respect to the action plan matrix, leading the feature selection algorithm to 

prefer irrelevant features. If the action plan similarity measure makes sense for CBP, then it 

appears that the set of indexing features should be augmented to include other features which 

relate more directly to the action plan matrix. In any case, an appropriate algorithm must be 

selected based on the characteristics of the data, or else the feature selection results could be 

harmed. In this short-duration project, we explored the Relief algorithm, which relies on 

measuring nearest neighbor distance between samples in the feature space.  In this study, we 

measure distance between cases in the case base along a subset of categorical indexing features, 

which limits the type of distance metrics that could be used.  Other filter evaluation algorithms 

could be tested and may work better than Relief for case base data; however, the chief concern is 

still including features in the full subset that are relevant to the chosen class label. 

 

5.     Conclusions 
 
In this project, we have addressed two main challenges in feature selection for CBP: evaluating 
the relevance of a feature subset and validating the result of a feature selection algorithm for 
CBP. The proposed solutions to these challenges are centered around an innovative idea which 
treats the plan portion of a case as its supervised label, and represents each label in the form of a 
sparse matrix, enabling the design of a general similarity measure to measure the match between 
two cases based on their plan portions. Based on the general similarity measure, we have 
developed several wrapper and filter methods for CBP. In particular, we have developed wrapper 
methods which use the aggregated leave-one-out loss of the training set as the subset evaluation 
measure. In addition, we have developed two filter approaches which either directly or indirectly 
use the general similarity measure to evaluate feature relevance. The indirect approach is 
characterized by a novel preprocessing procedure which first clusters the plan portions of all 
cases in a case base into a number of categories based on the general similarity measure, and then 
converts the original case base into a case base with categorical case labels. Based on the general 
similarity measure, we have also developed an N-fold cross validation (CV) procedure for result 
validation. 

The experimental results have shown that the proposed feature selection algorithms are capable 
of identifying relevant features among a large number of candidate features for indexing the 
cases. The proposed case clustering approach is promising in discovering high-level strategies 
(clusters) among the case base and thus enabling the application of state-of-the-art supervised 
feature selection algorithms on the case base. The automated feature selection capability 
provided by this project enables domain experts to include a sufficiently rich set of state features 
in the case base without the burden of manually deciding on an optimal set of features. Future 
effort will enable feature selection to adaptively include new features based on the dynamics of 
the battle space and automatically identify features from past experiences to construct the case 
base. Several immediate extensions of the effort of this project include: (1) improving the general 
similarity measure for plans by accounting for temporal variations of the same plan and studying 

the effect of variations of the general measure on the feature selection results; (2) an in-depth 

study of the effectiveness of case clustering for identifying high-level strategies based on case 

bases with known strategies; (3) developing unsupervised feature selection methods which 

identify relevant features directly from the plan portions of cases (the plan matrices) – features 
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that are relevant to CBP should contribute to the clustering of the plans into different strategies; 

and (4) studying the effectiveness of feature selection algorithms based on enriched sets of 
features (provided by the DEEP team or identified by unsupervised feature selection). 
 
The proposed CV procedure has also been shown useful for result validation of feature selection 
for CBP. The procedure is broadly applicable for evaluating alternative strategies of CBP, for 
example, using different similarity measures for nearest neighbor search in plan retrieval or 
different mechanisms for aggregating the plans of several nearest neighbors. Nevertheless, the 
use of the general similarity measure in the CV procedure has its own limitations compared to 
real-time execution of retrieved plans. The performance of a strategy under evaluation may be 
sensitive to variations in the specific measure used, and the best plan according to the measure 
may not always be the best plan in execution. A future research direction is to put the top 
performers of our proposed algorithms in action, and cross check the performance of these 
algorithms by real-time plan execution based on the current and improved versions of attack 
managers. 
 
 

6.    Appendix 
 
The content in this appendix reports additional research findings during the no-cost-extension 
period from August 1 to September 30, 2012. We present an improved similarity measure for 
plans by accounting for temporal variations of the same plan, and report results of wrapper and 

filter feature selection based on the new similarity measure. We also compare the new results of 

feature selection to those from the previous similarity measure reported in Section 4. 

 

6.1.   Improved Similarity Measure 
 
One issue about using the general loss function in Equation (1) to measure case similarity is the 
misalignment of actions in time between two cases of same strategy (build order). Players take 
varying amounts of time to execute their strategies. Similar strategies in this sense would be 
trivial to spot by a human, but difficult to detect by the current measure. If the same actions in 
two cases of same strategy are even one time step off, the current similarity measure will 
consider the two cases dissimilar. One way to overcome this limitation is to apply time warping 
to the action matrices. The idea is to take into account units from a number of steps earlier and 
later for a given time step. A discount factor is applied depending on how many time steps apart 
from the time step in question. Specifically, the time warped value on matrix P for unit u at time 
step t by considering k time steps before and after t is defined as: 
 

     = ∑  ( )           +    +∑  ( )            ,                                             
(4) 

where the discount factor is given by  
 ( )    

   

 
 . 

The parameter k controls the tradeoff between accommodation of time-misaligned data and the 
preservation of build order. In our experiments we set k equal to 3, considering the value of 3 
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corresponds to roughly one minute delay in taking actions. Experimental results show that this 
setting is able to correct the time misalignment for most cases with slight time differences in 
executing the same strategy. After applying time warping conversion of the case base, we apply 
the same general loss function in Equation (1) in measuring the similarity between two cases. 
 
Table 7 below shows the results of average leave-one-out cross validation (LOOCV) 
performance of the improved similarity measure in comparison with the previous version without 
time warping. To compute the LOOCV performance, for each left-out case (query case), its 
similarity to its nearest neighbor, farthest neighbors, and its average similarity to all other cases 
in the case base is calculated, and the performance is averaged over all cases. Since the action 
plan matrices are normalized and unit weights are used on all columns, the values of the 
similarity measure are bounded between 1 (most similar) and 0 (least similar) in all experiments. 
Based on the previous version of the similarity measure, the nearest neighbor similarity to a 
query case scores on average around midway in the possible range of [0,1], which is somewhat 
lower than could be expected. The furthest neighbor similarity is near 0.0. Based on the new 
similarity measure, the values in all three columns are higher. Most importantly, the average 
nearest neighbor similarity has improved significantly from around midway of the possible range 
to being very close to 1, while the average furthest neighbor similarity remains close to 0 despite 
a slight increase. Such results verify that the time warping mechanism effectively improves the 
general similarity measure.  
 

Table 7. LOOCV Performance under the Previous and New Similarity Measures 

 Nearest Neighbor Furthest Neighbor Average Neighbor 

Previous Similarity Measure 0.51±0.10 0.04±0.03 0.28±0.07 

New Similarity Measure 0.97±0.02 0.18±0.05 0.65±0.04 

 
 
When comparing the results, it is worth noting that the two similarity measures use different 
forms of distance function  for Equation (1). The previous similarity measure uses l1 norm 
which works better than Cosine distance, while the new similarity measure uses Cosine distance 
which gives the best similarity results. The superior performance of Cosine distance in the new 
experiments is that the action matrices become more densely populated with nonzero values due 
to the time warping operation. In the next two sections, we report wrapper and filter feature 
selection results based on the new similarity measure and compare the new results to those from 

the previous similarity measure. In order to make the two sets of results directly comparable, we 
rerun the experiments reported in Sections 4.2 and 4.3 using Cosine distance as the base distance 
function for the previous similarity measure.  
 

6.2.   Wrapper Feature Selection 

Table 8 reports the average value and standard deviation on the LOOCV similarity for the full 
feature set and the best feature subset found by the wrapper process under both the new similarity 
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measure and the previous similarity measure (with the base distance function changed to Cosine 
distance).  
 
Table 8. LOOCV Similarity under the Previous and the New Measures for the Full Feature Set and 

Selected Subset by the Wrapper 

 Full Feature Set Wrapper Selected Feature Subset 

Previous Similarity Measure 0.11±0.05 0.12±0.07 

New Similarity Measure 0.17±0.11 0.19±0.11 

 
 
The first notable observation is that the similarity values for the previous similarity measure 
using Cosine distance as the base distance function are significantly lower than those reported in 
Table 3. Second, the values are higher based on the new similarity measure, which is expected 
since the time warping performed on the action matrices before similarity computation can 
correct possible misalignment of actions in time between two similar cases.  
 
When comparing the results of wrapper feature selection to the LOOCV similarity among action 
matrices based on the new similarity measure (the second row of Table 7), we can see that the 
similarity of two cases which are deemed as nearest neighbors based on the selected feature 
subset in the state space are actually far less than the average neighbor similarity among all 
action matrices. This observation appears to contradict with the observation made in Section 4.2 
that when using the subset identified by the wrapper, the action similarity between a query and its 
nearest neighbor (in the state space) is greater than that of itself to all other cases (the Average 
Neighbor similarity). In fact, this is mainly due to the limitation of the previous similarity 
measure which does not properly handle cases of the same or similar strategy with misaligned 
actions in time. The new similarity measure addresses this limitation and results in much higher 
similarity values for Nearest Neighbor and Average Neighbor, and therefore, allows a more 
realistic baseline to evaluate the performance of feature selection. We did note in Section 4.2 that 
the similarity of the nearest neighbor based on the full feature set or the selected feature subset is 

significantly less than the most similar case to the query that exists in the case base. This finding 

indicates that there is more information in the action plan matrix than is currently being captured 

in the feature subset. The new results are consistent with our previous findings in this regard.   

 

Overall, we conclude that the features that are currently used to index the case base are far from 

enough to capture the similarity of cases in terms of actions. Additional features selected by an 

unsupervised approach that directly works on the action matrices can help to enrich the set of 

indexing features, in addition to features hand-picked based on domain knowledge. 

 

6.3.   Filter Feature Selection 

The setup of experiments for this section is the same as the one used in Section 4.3 except that 

the base distance function used for the previous similarity measure is changed to Cosine distance. 

Figure 5 reports the results of average LOOCV similarity for wrapper and filter feature selection 
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with the previous and the new similarity measures. The reference curve of no feature selection 

based on the previous similarity measure is also included. We can observe similar trends as those 

from Figure 4 in Section 4.3. Wrapper feature selection performed the best out of the three 

methods, while the filter method is the worst among the three. For both the wrapper and filter 

methods, the similarity values under the new measure are in general higher than those under the 

previous measure. For the wrapper method, the trend of increasing performance as the number of 

irrelevant feature rises is more pronounced in Figure 5 than the subtle trend shown in Figure 4.  

As explained in Section 4.3, this uprising trend is due to coincidental correlations among a few of 

the randomly generated irrelevant features with the action plan matrices. As the number of 

irrelevant features increases, the best subset selected is more likely to contain irrelevant features 

that are superficially correlated with the similarity of the action matrices. Since the upper bound 

on the similarity values has improved from around 0.5 to 1 under the new similarity measure, it 

leaves more room for the wrapper method to demonstrate the artifact of increasing similarity with 

more irrelevant features. 

 
 
Figure 5. Average Query Similarity under the Previous and the New Measures for Filter, Wrapper, 

or No Feature Selection as the Number of Irrelevant Features Increases from 0 to 50 

Table 9 presents the average subset precision for the filter algorithm when increasing numbers of 

features are present. Similar trends can be observed as in Table 4 from Section 4.3. Out of the 

seven features selected by the filter algorithm in each setting, an increasing number of them are 

irrelevant when the number of irrelevant features in the full feature set increases. In each case, at 

least two of the relevant selected features came from the set {blue race, red race, red state}, the 

optimal subset of features, however, false correlations led the selection algorithm to fill the 

remainder of the subset with irrelevant features, leading to the poor query similarity performance 

seen in Figure 5. The difference between the previous and the new measure is insignificant. 

 
Table 9. Average Precision of Filter under the Previous and the New Measure as the Number of 

Irrelevant Features Increases from 0 to 50 

# Irrelevant 

Features: 

0 1 5 10 20 50 
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Previous Measure 1.0±0.0 0.86±0.0 0.54±0.10 0.36±0.13 0.25±0.12 0.15±0.10 

New Measure 1.0±0.0 0.86±0.0 0.57±0.10 0.40±0.14 0.26±0.14 0.16±0.11 
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Symbols, Abbreviations and Acronyms 
 
CBP – Case Based Planning 
CV – Cross Validation 
DEEP – Distributed Episodic Exploratory Planning 
EBAR – Experience Based Adaptive Replanning 
FCBF – Fast Correlation Based Filter 
LOOCV – Leave One Out Cross Validation 
MDP – Markov Decision Process 
MRMR – Minimum Redundancy Maximum Relevancy 
 
 
 




